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A method of automation of the measurement of the effective diffusion coefficient 
in a fluidized bed is proposed and developed. 

In our previous studies [i, 2] we made a quantitative division of the two main compo- 
nents of the motion of particles in a fluidized bed -- the circulation motion of groups of 
neighboring particles through the entire apparatus and chaotic motion of the diffusion type 
caused by the random nature of the forces of interparticle interaction through the stream and 
leading to the decay and regeneration of "packets" of particles. The statistical nature of 
the processes leads to the fact that it is necessary to analyze a large number of measurements 
of the successive positions of a marked particle in the reactor and the distances between 
these positions in order to determine the mean values of the parameters of these motions -- 
the circulation velocity v and the effective particle diffusion coefficient D. Other groups 
of investigators studying various statistical characteristics of the motion of particles in a 
fluidized bed [3-5] have encountered similar difficulties. Regardless of the method of ob- 
taining the initial data (by direct measurements or the analysis of movie frames) the data for 
the statistical analysis must be obtained "by hand" and only then transferred to punched 
cards for subsequent computer processing. 

The great laboriousness of such methods has raised the problem of the automation of the 
measurements, recording, and computation of the initial data. With some change in the formu- 
lation of the experiment this course turns out to be feasible and promising. 

By definition, the effective diffusion coefficient is obtained through the averaging of 
the ratio D = a(12/t). When filming with equal intervals t between frames it is necessary to 
measure by hand all the successive segments I i and average over them, i.e., to assume that 

N 

D a ~ a 1 ~ l  2 
T t �9 ' "  

(i) 

One can, however, formulate the experiment differently and make the particle close some 
time relay at the moment it reaches a given point of the reactor and then open this relay 
when the particle travels a fully defined distance l (i.e., crosses a sphere or circle of 
radius 1). The successive intervals t i obtained can be recorded automatically and the un- 
known diffusion coefficient determined through the averaging 

N 

'E'  (2) 

To find the numerical factor a* in this case one must solve the diffusion problem 

OC 
= DV~C , ( 3 )  
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with the initial condition that the particle lies at the origin of coordinates and the prob- 
ability density of finding it is described by the Dirac 6-function, 

c (r, O) = 6 (r). (4) 

When the particle reaches the boundary L of the region the circuit of the time relay 
opens and the particle is absorbed by the contour, as it were, which corresponds to the boun- 
dary condition 

c L (t) : 0. (5)  

By denoting the distance to the boundary (the radius of the region) as I and changing to the 
dimensionless variables 

[_ -7 Dt - - _ _ ;  ~ -- , (6) 
! Z 2 

one can write the solution of Eq. (3) with the conditions (4) and (5) in the form 

c=w(~, ~). (7)  

The total diffusion flux passing through the entire contour boundary, 

L L 

g i v e s  t h e  p r o b a b i l i t y  t h a t  t h e  p a r t i c l e  t r a v e l s  a g i v e n  l e n g t h  I f rom t h e  c e n t e r  to  t h e  b o u n -  
d a r y  of the region in the time interval from T to T + dT. Having the probability density 
function P(T), one can calculate not only the mean value of the inverse time 

i l T ( j d x  
T 

l 2 | l ~ a *  ' ( 9 )  
.[ V (~) dr  
O 

bu t  a l s o  any  o c h e r  mean c h a r a c t e r i s t i c s  [ ,  ~a ,  o r  t h e  mos t  p r o b a b l e  t i m e s  o f  m o t i o n  tp  = 
( 1 2 / D ) x o ,  where  Xo i s  d e t e r m i n e d  f r o m  t h e  e q u a t i o n  

a ~  (~) = o. (10) 

Since the function ~exp(T), Obtained experimentally on the Basis of a large but finite 
number of measurements, will not coincide exactly with the calculated dependence (8), in a 
comparison of the experimentally found relationships Between (l/t), [, in, and tp with the 
analogous relationships between the calculated values of (I/T), ~, ~a, and To one will ob- 
serve a certain scatter of the values of the effective diffusion coefficient D calculated in 
this way, depending on the accuracy of the measurements. 

In the presence of circulation motions the prohlem becomes more complicated, since Eq. 
(3) must be replaced by the more general equation�9 

0c 
: DV2c--vV c. (ii) 

at 

With the change to dimensionless variables the problem and its solution prove to be de- 
pendent on the additional dimensionless Peclet number 

vl 
P _ . (12) 

D 

The p r o b a b i l i t y  d e n s i t y  o f  t h e  t i m e  os  t r a v e l l i n g  t h e  d i s t a n c e  ~, i . e . ,  t h e  f u n c t i o n  ~ ( x ,  P ) ,  
and c o n s e q u e n t l y  a l l  t h e  c h a r a c t e r i s t i c s  T n and To, w i l l  a l s o  depend  on t h i s  q u a n t i t y .  T h e r e -  
fore, in a comparison between experimentally averaged times and calculated times it is neces- 
Sary to calculate at least two different characteristics, and to determine the quantity D one 
must construct a combination of them from which the quantity P has been eliminated on the 
basis of a theoretical analysis. 

1346 



Theoretical Statement of the Problem 

Such a problem was first solved completely by Smolukhovskii. In [6] he considered a 
heavy particle which enters the gravitational field with constant velocity from a point 
located at a height I above the ground level and undergoes Brownian motion characterized by 
the effective diffusion coefficient D. By solving Eq. (ii) with the added conditions (4) and 

(5) for this case Smolukhovskii found the probability distribution for the times in which the 
incident particle reaches the earth's surface. In the dimensionless variables (6) presented 
above this function (8) has the form 

i 
(~) d~ -- exp [-- (I --P~)~ (4j-:] d~. (13) 

2V~ 
Using this function, one can easily determine the unknown time characteristics 

v ' - -  [ ' ~ ; ~----~- ~ ' (14) 

t p =  ~ : -  1 9 1 . 

The  v a l u e s  o f  v a n d  D c a n  b e  d e t e r m i n e d  i n  v a r i o u s  w a y s  f r o m  t h e s e  e q u a t i o n s ,  

T h u s ,  v = l / t ,  a n d  o n  t h e  s u g g e s t i o n  o f  W e i s s  [ 7 ] ,  we h a v e  

D = - -  - -  . ( 1 5 )  
2 

F o r  P ~ 1 i t  i s  c o n v e n i e n t  t o  d e t e r m i n e  D a p p r o x i m a t e l y  f r o m  ( 1 4 )  w i t h  a n  a c c u r a c y  o f  3% b y  
the relation 

f~ 
D~ -- (16) 

6tp 

As seen from this, for P < 1 the relation (16) is the least sensitive to the effect of the 
velocity of the ordered motion for a determination of D. In the limiting case of P § ~, when 
v >> D/l, the distribution (13) approaches the 8 function and all the average values are iden- 
tical : 

[ q - 1 ) l - 1  = 7 = ~ 1 / _ o  = tp = 

In the other limiting case of P § 0, when v << D/l, 

I ~ l ~ 
-- tp-- , 

[(U:)]- :  2D ' 6D 

and all the residual averages t n for n > 0 approach infinity, so that the "tail" of the dis- 
tribution (13) is strongly extended in this case, declining only as t -3/2, and the diffusing 
particles can at first depart very much from the boundary, until they randomly turn around 
and approach it. 

The limiting region of wandering of the marked particle is of great interest for our 
problems. In the one-dimensional case in the dimensionless variables (6) with the parameter 
(12), Eq. (ii) takes the form 

Oc a2c ac 
- -  _ _  p -  

OT 0~ 2 0~ (17) 

with the initial condition (4) and the following boundary conditions on both sides of the in- 
terval: 

c ( + l , - r ) - - O  at ~ = •  (18) 

Using the operator method we introduce the following transform of the unknown function: 

r 

Z (s, ~) = .[ exp ( - -  s~) c (~, "~) dT. ( 1 9 )  
0 
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Substituting into (17) and using the initial and boundary conditions, we find that 

z (s, ~) = / 1/-�84184 exp if- ~ - -  s + --$- p~ ch ~ s + 4 -  
_ /  p2 exp 1--1gl s + 4 . _ / -  p~ " 

2 ~ /  s +  4 c h V  s +  4 

The total flux through bothboundaries is 

OX x=+t x=-I 

and its transform in the dimensionless coordinates (6) is 

ch i 

(s) = ''~ dZ ~=+1---- 2 

, ~=_, d~ ch 1 /  S 
V 

(20) 

pY--" (21) 

4 

The inverse transform is represented in the form of the infinite series 

T(~)=ch P e x p ( - - - ~ - x ) n s  as ] -- ~ -  (2k @ 1)z'~ . (22) 

0 

Since this series converges very rapidly even when T > 0.i, one can seek the time of reach- 
ing the maximum probability of the arrival of the particle at the boundary by differentiating 
only the first two terms of the series and equating the derivative of this sum to zero. From 
this condition it is easy to find the quantity 

p 2  

I 1 + 9~ 2 1 
% = ~ In 27 p~ 

j l  2 

= 0.1467 + 0.05071n 

iD 2 
l + - -  

9a 2 
p2 

1 + - -  
;1@ 

(23) 

which when P < i equals 0.147 with an accuracy of 3%, i.e., close to i/6 = 0.167 as in (16). 

The series (22) obtained is not suitable for finding the mean values of the times T n, 
and it is convenient to start directly from its transform (21). 

From the definition of the average 

i T  ('q d'~ 
0 

First let us find i T(x)dz. If the transform of the function ~(T) is ~(s), 
0 

of the unknown integral will be (i/s)r 

then the transform 

As is known, large values of �9 correspond to small 

values of the Laplace parameter s. Consequently, the transform of the number iT(T)d~ 
0 

terest to us will be the limit 1--lim~(s)= ~(0) , while the number itself will be 
S ~ 0  S 

of in- 

g= 

.I T (~) d, = �9 (o). 
0 

(24) 
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But in our case ~(0) = ch(P/2)/ch(P/2) = i. 

Similarly, one can find that when n > 0 

i T,~ = .~n ~ ('0 d'~ = (--  l )n ds n s=o 
0 

0 

(25) 

Thanks to the boundedness of the region on both sides -- ~ < x < + I in this example, in con- 
trast to the preceding Smolukhovskii problem, the average times t n (for n > 0) do not go to 
infinity when v = 0. On the other hand, in comparison with (14) the definite additivity of 
the diffusion and convective components disappears from the expressions for these times, In 

fact, in this case 

�9 - -  - + - -  ~s P - - , - 0 ,  _ dqJ ! 1 ch-~- s@ 4 = 1 .  ~ 2 
T g 

ds / ;  p~ / p2 2 P 1 
j ,=o= 2 & 4 ch 2 s n 4 2 T I - -  ~ a s  p - - - > - o o .  " 

Changing to dimensional variables, we obtain 

th vl [ l 2 D - - - > - - -  when v < < -  
7 = l 2 _ _ 2 D  ] 2D l ' 

2D vl l D - - ~ - -  when V>> - - .  
2D v l 

Similarly, for the average inverse time 

p2 2 c h y  - + 2 + P  as P -->- oo. 
o ch s + - U  ~,/2 

The complicated dependences of t and (t --~r) on D and v which are obtained make difficult the 
separate determination of the latter parameters from the experimental data for the average 
times. Thus, if one multiplies these times, one obtains the relation 

sh ---P 
2 j 2ydy --F(P), (26) t (t -1) = �9 (~-1)  - p c h y  

P/2 

from which, in principle, one can determine the quantity P, i.e., the ratio vl/D, although 
the function F(P) which stands on the right and which can be tabulated varies relatively slow- 
ly in the entire range of variation of the argument (from 1.82 as P § 0 to I as P + ~) and 
small errors in the experimental determination of the quantities ~ and (t -=T) and their prod- 
uct lead to an error of hundreds of percent in the determination of P. 

It is natural that in this case also as P * ~ (v >> D/~) the probability distribution 
$(t) of the times in which the marked particle reaches the boundary of the region approaches 

the ~ function and all the time averages, 

Thus, in the presence of outer absorbing boundaries of the region, if the experimental 
distribution function is relatively broad and far from the peak-shaped ~ function, then one 
can be sure that the P6clet number is small (P ~I) and one can determine the effective dif- 
fusion coefficient D from the experimental data by assuming that P = 0. The most accurate 
and convenient method in this case is the use of Eq. (23), from which we have 
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12 
D e =  0.147 -- tp (27) 

To e s t i m a t e  the  d e g r e e  of  i n f l u e n c e  of  t h e  c o n v e c t i v e  component ( t h e  q u a n t i t y  P) on the  a c -  
c u r a c y  o f  the  v a l u e  o f  D e o b t a i n e d  one can compare how the  q u a n t i t i e s  DEC/12 and ( 1 2 / D e ) ( l / t )  

d i f f e r  f rom t h e i r  l i m i t i n g  v a l u e s  1/2 and 3 .64 and how the  p r o d u c t  t ( t  -1 )  d i f f e r s  f rom 1 . 8 2 .  

For the  d e t e r m i n a t i o n  of  t h e  c o n v e c t i v e  c h a r a c t e r i s t i c  v i t  i s  n e c e s s a r y  to  i n c r e a s e  the  
P ~ c l e t  number P = v l / D  as much as p o s s i b l e  under  t he  e x p e r i m e n t a l  c o n d i t i o n s ,  i . e . ,  to  move 
ou t  the  b o u n d a r y  1 o f  t h e  measurement  r e g i o n .  

The e q u a t i o n s  and the  c o n c l u s i o n s  o b t a i n e d  in  t h e  l a s t  example w i l l  a l s o  be q u a l i t a t i v e -  
l y  v a l i d  i n  the  two-  and t h r e e - d i m e n s i o n a l  c a s e s  w i t h  c y l i n d r i c a l  and s p h e r i c a l  b o u n d a r i e s .  
These c o n s i d e r a t i o n s  s e r v e d  as the  b a s i s  f o r  t h e  deve lopmen t  o f  an au toma ted  method of  mea- 
s u r i n g  t he  e f f e c t i v e  d i f f u s i o n  c o e f f i c i e n t  f o r  p a r t i c l e s  i n  a f l u i d i z e d  bed .  

Automation of Statistical Measurements of Transit Times 

The experiments were performed, as earlier, on a model installation containing a two- 
dimensional fluidized bed "one grain thick." Initially we used the method of filming a par- 
ticle marked with dye and moving among i00 other aluminum disks just like it, i0 mm in diam- 
eter and 5 mm thick, in a plastic reactor 500 mm high and with a rectangular cross section of 
150 • 7 mm. The two-dimensional bed was fluidized by an ascending stream of water or aqueous 
solutions of glycerin, circulated through the closed system. The motion-picture frames were 
analyzed by hand and the successive movements I i of the marked particle were measured at dif- 
ferent fixed intervals t (every frame, every two frames, every three frames, etc.). The 
values of the parameters D and v were determined by a method described earlier [8]. With 
stream velocities on the order of i0 cm/sec it was found that D ~ 5 cm2/sec and v ~ 7 cm/sec. 

We chose an optical method for the automation of the measurements of t. The main par- 
ticles of the bed were transparent isotropic glass disks 8 mm in diameter. The marked par- 
ticle was a disk of the same mass and size made of quartz, which rotates the plane of polari- 
zation. The thickness of this disk (and, consequently, of the other glass disks) had to be 
3.8 mm for it to rotate light with a wavelength of 550-560 nm by 90 ~ . The model transparent 
reactor had a height of 480 mm and a rectangular cross section of 150 • 6 mm. The bed of 200 
polished glass disks and one quartz disk poured into it was fluidized by an ascending stream 
of water or a mixture of water and glycerin. 

A schematic optical diagram of the installation is shown in Fig. lb. Light from the in- 
candescent lamp 1 passes through the light filters 2-2', which isolate the section of the 
spectrum indicated above, the long-focus lens 3, the polarizer 4, and the opaque screen 5 
with an opening ii at the center and an annular slot i0 (see Fig. la), and it illuminates the 
reactor 6. The analyzer 7 is crossed with the polarizer and almost extinguishes the light 
passing through the reactor and the isotropic glass beads. Only when the quartz disk is in 
the path of the beam is its plane of polarization rotated so that the beam passes through the 
analyzer. 

When the quartz particle crosses over the central opening of the screen which is 8 mm 
in diameter the emerging light falls on the photoresistor 8, the resistance of the latter 
drops sharply, and a voltage pulse arises in its circuit which enters a special electronic 
selector (a diagram of which is not presented here), turning on a block of nine electrome- 
chanicalscalers. Each of these scalers waits for its set time tk and then turns off, turning 
on the next scaler. 

After some time t the quartz particle, having traveled a length l, crosses a section of 
the annular slot, the large diameter of which is 55 mm and the smaller diameter 45 mm. The 
light from these sections is focused by the second lens 3 on a second photoresistor 9, which 

k - k+! 

sends a second pulse to the electronic circuit. If this time t>~t~, but l<~l~, then the 
f = l  /=1 

f i r s t  k s c a l e r s  have a l r e a d y  t u r n e d  o f f ,  t he  (k + 1 ) - t h  w a i t i n g  s c a l e r  r e c e i v e s  t h e  p u l s e  and 
i t s  p o i n t e r  s h i f t s  by one d i v i s i o n ,  and the  r e m a i n i n g  c o u n t e r s  have  no t  y e t  been  t u r n e d  on.  
This  same p u l s e  s w i t c h e s  the  s y s t e m  to  t he  i n i t i a l  s t a t e  and t h e  c i r c u i t  i s . r e a d y  f o r  a new 
t r i g g e r i n g ,  when t h e  q u a r t z  p a r t i c l e  a g a i n  c r o s s e s  the  c e n t r a l  open ing  of  t h e  s c r e e n .  
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Fig. i. Trajectory of motion of marked particle 
from "center" to "ring" (a) and optical diagram 
of experimental installation (b). 
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Fig. 2. Histogram of the times in which the 
marked particle passes a given distance I (the 
fluidizing substance is a 70% solution of glycer- 
in in water), t, sec. 

At the end of the experiment, which lasts 2-3 h, the readings n k of all the scalers, rep- 
resenting the numbers of cases when the marked particle traveled a given length I in a time t 
in the interval At k = tk -- tk-~, are taken and recorded. The quantity nk/En i itself charac- 
terizes the value ~(t)dt, introduced above, of the probability distribution of the times in 
which the particle travels a given path length (or more accurately, displacement) ~. The 
duration of each experiment was chosen so that the time selector on the nine scalars recorded 
100-150 times of passage of the marked particle from the center to the ring in this time. For 
convenience of the count the intervals At k between the times of switching of the scalers were 
chosen as different and increasing for larger t k. The values of the distribution function 
corresponding to this were determined as 

W( t~-l~ th - ) -  n k - -  (28)  
2 9 

At~, ~ n k 
1 

and the average values were calculated from the equations 

9 

E( ; t~_l + th nk/Atk 
2 

= 

~ nklAtk 
1 

(29) 

A histogram of one of these experiments is presented in Fig. 2. 
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Results of Measurements 

For the determination of the effective dif- 
fusion (dispersio~ coefficient for the chaotic 
motion of particles it would be desirable to 
perform the experiments with small values of 
the P6clet number in order to eliminate or suf- 
ficiently weaken the influence of the circula- 
tion motion of "packets" of particles through 
the reactor. For this we chose the radius I = 
2.5 cm for the ring. From an estimate of the 
values of D and v obtained in the experiments 
on the motion of aluminum disks in similar li- 
quids [8], we have 

vl 7.2 .5  
P = - -  ~ - - ~ 3 - - 4 .  

D 5 

To obtain the calculating equations in 
our case of cylindrical symmetry we solved the 
diffusion equation corresponding to the limit- 
ing case of P = 0, 

Oc -- D [ . . . .  a2c 1 Oc ] 
Ot L 0r2 ~ r Or (30 )  

with the initial condition c(r, 0) = ~(r) and 
the boundary condition c(Z, t) = 0. 

The solution was carried out by the oper- 
ator method and for the transform of the total 
flux ~(t) through the entire annular boundary 
of the region we obtained 

! 
~(s )  = , ~ ( 0 ) =  I. (31) 

The i n v e r s e  o f  t h i s  t r a n s f o r m  c a n  b e  r e p r e s e n t e d  
i n  t h e  f o r m  o f  t h e  r a p i d l y  c o n v e r g i n g  s e r i e s  

7 1 J l - ~ k )  - -  Vk l'--~. , 

w h e r e  Yk a r e  t h e  r o o t s  o f  t h e  z e r o t h - o r d e r  B e s -  
s e l  f u n c t i o n  J o ( Y k )  = O. C o n f i n i n g  o n e s e l f  t o  
the first two terms of this series, one could 
find the time in which the maximum value of the 
probability ~(t) is reached: 

12 
/p,~, O, 12 ~ . (33 )  

The average times were calculated from Eqs. 
(25) using the transform (31). The integral of 
(25) was calculated numerically. As a result, 
we obtained 

( 1 )  o 12 
= 6 . 1 3 - ~ ;  l - = 0 . 2 5  ~ - ;  

1 f ~ = 0 . 3 1  D ' 
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From this the quantity D could be calculated by four different means: 

D = 0 . 1 6 3 / 2  ; D = 0 . 2 5 - = ;  
t 

l 2 l 2 
m = o . 3 1 - - ;  D =  o.12 

tp 

(35) 

The results of these calculations for different fluidization conditions are summarized 
in Table i. 

As in the example of the one-dimensional linear problem analyzed above, in the case of 
cylindrical symmetry the product t(i/t) should be a function of the P~clet number and should 
decrease from the calculated value of 1.53 at P = 0 to 1 as P § =. The intermediate values 
of this product of 1.1-1.5 obtained in the experiment show that the value of P is actually on 
the order of unity, but they do not permit one to accurately determine its value and thereby 
the values of the circulation velocity v = P(D/I). In addition, by the very method of the 
experiment a considerable time interval of about i00 sec passes between individual measure- 
ments of t until the marked particle again reaches the initial point of origin of reckoning 
of the travel. But the quantity v in a fluidized bed is only an average characteristic of 
the circulation flows of the solid phase and in the interval between counts it can change 
markedly both in magnitude and in direction. 

NOTATION 

v, circulation velocity; D, effective diffusion coefficient; ~, travel of a particle in 
a time t and mean radius of the annular slot; t, tp, time interval and its probable value; ~, 
~*, numerical coefficients which depend on the statement of the problem; c, concentration of 
the marked admixture; n, normal to the contour; r, cylindrical coordinate; L, size of region; 
~, T, ~, d~, dimensionless coordinate, dimensionless time, dimensionless normal, and dimen- 
sionless element of the contour; j, diffusion flux; ~(T), probability density function; P, 
P~clet number; Io, Jo, J1, Bessel function of imaginary and real argument; Yk, roots of Bes- 
sel function; nk, readings of k-th scaler. 

1. 
2. 

3. 

4. 
5. 
6. 
7. 
8. 
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